Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612808

RESUMO

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Assuntos
Doenças do Colo , Células Intersticiais de Cajal , Animais , Camundongos , Masculino , Serotonina/farmacologia , Células Intersticiais do Testículo , Inibidores de Adenilil Ciclases , Bloqueadores dos Canais de Cálcio , Inibidores de Proteínas Quinases
2.
Naunyn Schmiedebergs Arch Pharmacol ; 387(7): 641-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24676911

RESUMO

Cyclic guanosine 3',5'-monophosphate (cGMP) inhibited the generation of pacemaker activity in interstitial cells of Cajal (ICCs) from the small intestine. However, cGMP role on pacemaker activity in colonic ICCs has not been reported yet. Thus, we investigated the role of cGMP in pacemaker activity regulation by colonic ICCs. We performed a whole-cell patch-clamp and Ca(2+) imaging in cultured ICCs from mouse colon. 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) increased the pacemaker potential frequency, whereas zaprinast (an inhibitor of phosphodiesterase) and cell-permeable 8-bromo-cGMP decreased the pacemaker potential frequency. KT-5823 (an inhibitor of protein kinase G [PKG]) did not affect the pacemaker potential. L-N(G)-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide [NO] synthase) increased the pacemaker potential frequency, whereas (±)-S-nitroso-N-acetylpenicillamine (SNAP, a NO donor) decreased the pacemaker potential frequency. Glibenclamide (an ATP-sensitive K(+) channel blocker) did not block the effects of cell-permeable 8-bromo-cGMP and SNAP. Recordings of spontaneous intracellular Ca(2+) ([Ca(2+)]i) oscillations revealed that ODQ and L-NAME increased [Ca(2+)]i oscillations. In contrast, zaprinast, 8-bromo cGMP, and SNAP decreased the [Ca(2+)]i oscillations. Basal cGMP levels regulate the resting pacemaker potential frequency by the alteration on Ca(2+) release via a PKG-independent pathway. Additionally, the endogenous release of NO seems to be responsible maintaining basal cGMP levels in colonic ICCs.


Assuntos
Cálcio/metabolismo , Colo/citologia , GMP Cíclico/fisiologia , Células Intersticiais de Cajal/fisiologia , Potenciais da Membrana/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo
3.
J Gastroenterol ; 49(6): 1001-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23780559

RESUMO

BACKGROUND: Hyperpolarization-activated cyclic nucleotide (HCN) channels are pacemaker channels that regulate heart rate and neuronal rhythm in spontaneously active cardiac and neuronal cells. Interstitial cells of Cajal (ICCs) are also spontaneously active pacemaker cells in the gastrointestinal tract. Here, we investigated the existence of HCN channel and its role on pacemaker activity in colonic ICCs. METHODS: We performed whole-cell patch clamp, RT-PCR, and Ca(2+)-imaging in cultured ICCs from mouse mid colon. RESULTS: SQ-22536 and dideoxyadenosine (adenylate cyclase inhibitors) decreased the frequency of pacemaker potentials, whereas both rolipram (cAMP-specific phosphodiesterase inhibitor) and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. CsCl, ZD7288, zatebradine, clonidine (HCN channel blockers), and genistein (a tyrosine kinase inhibitor) suppressed the pacemaker activity. RT-PCR revealed expression of HCN1 and HCN3 channels in c-kit and Ano1 positive colonic ICCs. In recordings of spontaneous intracellular Ca(2+) [Ca(2+)]i oscillations, rolipram and 8-bromo-cAMP increased [Ca(2+)]i oscillations, whereas SQ-22536, CsCl, ZD7288, and genistein decreased [Ca(2+)]i oscillations. CONCLUSIONS: HCN channels in colonic ICCs are tonically activated by basal cAMP production and participate in regulation of pacemaking activity.


Assuntos
Cálcio/metabolismo , Colo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células Intersticiais de Cajal/metabolismo , Animais , Células Cultivadas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Células Intersticiais de Cajal/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
World J Gastroenterol ; 19(8): 1210-8, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23482668

RESUMO

AIM: To investigate lipopolysaccharide (LPS) related signal transduction in interstitial cells of Cajal (ICCs) from mouse small intestine. METHODS: For this study, primary culture of ICCs was prepared from the small intestine of the mouse. LPS was treated to the cells prior to measurement of the membrane currents by using whole-cell patch clamp technique. Immunocytochemistry was used to examine the expression of the proteins in ICCs. RESULTS: LPS suppressed the pacemaker currents of ICCs and this could be blocked by AH6809, a prostaglandin E2-EP2 receptor antagonist or NG-Nitro-L-arginine Methyl Ester, an inhibitor of nitric oxide (NO) synthase. Toll-like receptor 4, inducible NO synthase or cyclooxygenase-2 immunoreactivity by specific antibodies was detected on ICCs. Catalase (antioxidant agent) had no action on LPS-induced action in ICCs. LPS actions were blocked by nuclear factor κB (NF-κB) inhibitor, actinomycin D (a gene transcription inhibitor), PD 98059 (a p42/44 mitogen-activated protein kinases inhibitor) or SB 203580 [a p38 mitogen-activated protein kinases (MAPK) inhibitor]. SB 203580 also blocked the prostaglandin E2-induced action on pacemaker currents in ICCs but not NO. CONCLUSION: LPS inhibit the pacemaker currents in ICCs via prostaglandin E2- and NO-dependent mechanism through toll-like receptor 4 and suggest that MAPK and NF-κB are implicated in these actions.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Periodicidade , Animais , Antioxidantes/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Feminino , Células Intersticiais de Cajal/enzimologia , Intestino Delgado/citologia , Intestino Delgado/enzimologia , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
5.
Mol Cells ; 35(1): 79-86, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23307289

RESUMO

Interstitial cells of Cajal (ICC) are the pacemaker cells that generate the rhythmic oscillation responsible for the production of slow waves in gastrointestinal smooth muscle. Spingolipids are known to present in digestive system and are responsible for multiple important physiological and pathological processes. In this study, we are interested in the action of sphingosine 1-phosphate (S1P) on ICC. S1P depolarized the membrane and increased tonic inward pacemaker currents. FTY720 phosphate (FTY720P, an S1P(1,3,4,5) agonist) and SEW 2871 (an S1P(1) agonist) had no effects on pacemaker activity. Suramin (an S1P(3) antagonist) did not block the S1P-induced action on pacemaker currents. However, JTE-013 (an S1P(2) antagonist) blocked the S1P-induced action. RT-PCR revealed the presence of the S1P(2) in ICC. Calphostin C (a protein kinase C inhibitor), NS-398 (a cyclooxygenase-2 inhibitor), PD 98059 (a p42/44 inhibitor), or SB 203580 (a p38 inhibitor) had no effects on S1P-induced action. However, c-jun NH(2)-terminal kinase (JNK) inhibitor II suppressed S1P-induced action. External Ca(2+)-free solution or thapsigargin (a Ca(2+)-ATPase inhibitor of endoplasmic reticulum) suppressed action of S1P on ICC. In recording of intracellular Ca(2+) ([Ca(2+)](i)) concentration using fluo-4/AM S1P increased intensity of spontaneous [Ca(2+)](i) oscillations in ICC. These results suggest that S1P can modulate pacemaker activity of ICC through S1P(2) via regulation of external and internal Ca(2+) and mitogenactivated protein kinase activation.


Assuntos
Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Animais , Antinematódeos/farmacologia , Cálcio/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feminino , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Canais Iônicos/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftalenos/metabolismo , Organofosfatos/farmacologia , Técnicas de Patch-Clamp , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato , Suramina/farmacologia
6.
Pharmacology ; 90(3-4): 151-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22890360

RESUMO

BACKGROUND AND PURPOSE: Lipopolysaccharide (LPS) induces intestinal dysmotility by alteration of smooth muscle and enteric neuronal activities. However, there is no report on the modulatory effects of LPS on the interstitial cells of Cajal (ICCs). We investigated the effect of LPS and its signal transduction in ICCs. METHODS: We performed whole-cell patch clamp and RT-PCR in cultured ICCs from mouse small intestine. RESULTS: LPS suppressed the generation of pacemaker currents of ICCs. The mRNA transcripts for Toll-like receptor 4 (TLR4) were expressed in ICCs. However, the inhibitory action of LPS on pacemaker currents from TLR4(+/+) mice was not present in TLR4(-/-) mice. The inhibitory effects of LPS on ICCs were blocked by glibenclamide (an inhibitor of ATP-sensitive K(+) channels), NS-398 (a COX-2 inhibitor), AH6808 [a prostaglandin E(2) (PGE(2))-EP(2) receptor antagonist], ODQ (an inhibitor of guanylate cyclase) and L-NAME [an inhibitor of nitric oxide synthase (NOS)]. Furthermore, genistein and herbimycin A (tyrosine kinase inhibitors) blocked the LPS-induced inhibitory action on pacemaker activity in ICCs. CONCLUSIONS: LPS can activate ICCs to release NO and PGE(2) through TLR4 activation. The released NO and PGE(2) inhibit pacemaker currents by activating ATP-sensitive K(+) channels. The LPS actions are mediated by tyrosine kinase signaling pathways.


Assuntos
Células Intersticiais de Cajal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Animais , Dinoprostona/biossíntese , Células Intersticiais de Cajal/fisiologia , Canais KATP/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Proteínas Tirosina Quinases/fisiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia
7.
Mol Cells ; 33(5): 509-16, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22441675

RESUMO

Neurotensin, a tridecapeptide localized in the gut to discrete enteroendocrine cells of the small bowel mucosa, is a hormone that plays an important role in gastrointestinal secretion, growth, and motility. Neurotensin has inhibitory and excitatory effects on peristaltic activity and produces contractile and relaxant responses in intestinal smooth muscle. Our objective in this study is to investigate the effects of neurotensin in small intestinal interstitial cells of Cajal (ICC) and elucidate the mechanism. To determine the electrophysiological effects of neurotensin on ICC, whole-cell patch clamp recordings were performed in cultured ICC from the small intestine. Exposure to neurotensin depolarized the membrane of pacemaker cells and produced tonic inward pacemaker currents. Only neurotensin receptor1 was identified when RT-PCR and immunocytochemistry were performed with mRNA isolated from small intestinal ICC and c-Kit positive cells. Neurotensin-induced tonic inward pacemaker currents were blocked by external Na⁺-free solution and in the presence of flufenamic acid, an inhibitor of non-selective cation channels. Furthermore, neurotensin-induced action is blocked either by treatment with U73122, a phospholipase C inhibitor, or thapsigargin, a Ca²âº-ATPase inhibitor in ICC. We found that neurotensin increased spontaneous intracellular Ca²âº oscillations as seen with fluo4/AM recording. These results suggest that neurotensin modulates pacemaker currents via the activation of non-selective cation channels by intracellular Ca²âº-release through neurotensin receptor1.


Assuntos
Células Intersticiais de Cajal/metabolismo , Intestino Delgado/metabolismo , Músculo Liso/metabolismo , Neurotensina/metabolismo , Neurotensina/farmacologia , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Feminino , Técnicas In Vitro , Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Canais Iônicos/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Neurotensina/metabolismo , Sódio/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
8.
Chonnam Med J ; 47(2): 72-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22111064

RESUMO

We studied whether nitric oxide (NO) and hydrogen sulfide (H(2)S) have an interaction on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of NO and H(2)S on pacemaker activities were investigated by using the whole-cell patch-clamp technique and intracellular Ca(2+) analysis at 30℃ in cultured mouse ICC. Exogenously applied (±)-S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, or sodium hydrogen sulfide (NaHS), a donor of H(2)S, showed no influence on pacemaker activity (potentials and currents) in ICC at low concentrations (10 µM SNAP and 100 µM NaHS), but SNAP or NaHS completely inhibited pacemaker amplitude and pacemaker frequency with increases in the resting currents in the outward direction at high concentrations (SNAP 100 µM and NaHS 1 mM). Co-treatment with 10 µM SNAP plus 100 µM NaHS also inhibited pacemaker amplitude and pacemaker frequency with increases in the resting currents in the outward direction. ODQ, a guanylate cyclase inhibitor, or glibenclamide, an ATP-sensitive K(+) channel inhibitor, blocked the SNAP+NaHS-induced inhibition of pacemaker currents in ICC. Also, we found that SNAP+NaHS inhibited the spontaneous intracellular Ca(2+) ([Ca(2+)](i)) oscillations in cultured ICC. In conclusion, this study describes the enhanced inhibitory effects of NO plus H(2)S on ICC in the mouse small intestine. NO+H(2)S inhibited the pacemaker activity of ICC by modulating intracellular Ca(2+). These results may be evidence of a physiological interaction of NO and H(2)S in ICC for modulating gastrointestinal motility.

9.
Korean J Physiol Pharmacol ; 15(3): 129-35, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21860590

RESUMO

In this study we determined whether or not 5-hydroxytryptamine (5-HT) has an effect on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of 5-HT on pacemaker activities were investigated using a whole-cell patch-clamp technique, intracellular Ca(2+) ([Ca(2+)](i)) analysis, and RT-PCR in ICC. Exogenously-treated 5-HT showed tonic inward currents on pacemaker currents in ICC under the voltage-clamp mode in a dose-dependent manner. Based on RT-PCR results, we found the existence of 5-HT(2B, 3, 4, and 7) receptors in ICC. However, SDZ 205557 (a 5-HT(4) receptor antagonist), SB 269970 (a 5-HT7 receptor antagonist), 3-tropanylindole - 3 - carboxylate methiodide (3-TCM; a 5-HT(3) antagonist) blocked the 5-HT-induced action on pacemaker activity, but not SB 204741 (a 5-HT(2B) receptor antagonist). Based on [Ca(2+)](i) analysis, we found that 5-HT increased the intensity of [Ca(2+)](i). The treatment of PD 98059 or JNK II inhibitor blocked the 5-HT-induced action on pacemaker activity of ICC, but not SB 203580. In summary, these results suggest that 5-HT can modulate pacemaker activity through 5-HT(3, 4, and 7) receptors via [Ca(2+)](i) mobilization and regulation of mitogen-activated protein kinases.

10.
J Neurogastroenterol Motil ; 16(3): 265-73, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20680165

RESUMO

BACKGROUND/AIMS: Capsaicin (8-methyl-N-vanillyl-6-ninenamide), a compound found in hot peppers, has been reported to have different physiological actions on different cell types. Not much work has been done about the effect of capsaicin on the function of interstitial cells of Cajal (ICC). In the present study, we examined the action of external application of capsaicin on pacemaker activity in the cultured ICC from the small intestine of mouse. METHODS: We investigated the effect of capsaicin on pacemaker currents in cultured ICC from the small intestine of mouse using a whole cell patch-clamp technique and Ca(2+)-imaging analysis. RESULTS: When capsaicin was applied externally to the pacemaker generating ICC, it completely inhibited the pacemaker potential under current-clamp mode (I = 0) and the pacemaker current under voltage-clamp mode at a -70 mV of holding potentials. The effect of capsaicin on pacemaker activity in ICC was shown dose dependently. The effect of capsaicin was not through the transient receptor potential of the vanilloid type 1 (TRPV1) channel as capsazepine did not block the effect of capsaicin. L-NAME, an inhibitor of nitric oxide synthase, also did not block the capsaicin-induced effects. When the action of capsaicin was examined in the intracellular calcium oscillation, it completely abolished the calcium oscillation. CONCLUSIONS: These results prove that the capsaicin has the inhibitory effects on the ICC which is carried out neither through TRPV channel nor the nitric oxide production. Intracellular Ca(2+) was also an important target for actions of capsaicin on ICC.

11.
Korean J Physiol Pharmacol ; 12(3): 111-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20157403

RESUMO

The effects of (-)-epigallocatechin gallate (EGCG) on pacemaker activities of cultured interstitial cells of Cajal (ICC) from murine small intestine were investigated using whole-cell patch-clamp technique at 30 and Ca(2+) image analysis. ICC generated spontaneous pacemaker currents at a holding potential of -70 mV. The treatment of ICC with EGCG resulted in a dose-dependent decrease in the frequency and amplitude of pacemaker currents. SQ-22536, an adenylate cyclase inhibitor, and ODQ, a guanylate cyclase inhibitor, did not inhibit the effects of EGCG. EGCG-induced effects on pacemaker currents were not inhibited by glibenclamide, an ATP-sensitive K(+) channel blocker and TEA, a Ca(2+)-activated K(+) channel blocker. Also, we found that EGCG inhibited the spontaneous [Ca(2+)](i) oscillations in cultured ICC. In conclusion, EGCG inhibited the pacemaker activity of ICC and reduced [Ca(2+)](i) oscillations by cAMP-, cGMP-, ATP-sensitive K+ channel-independent manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...